Latest update
2020-04-04 1500UTC
Larger clades were named based on marker variants:

- **S** ... ORF8-L84S
- **G** ... S-D614G
- **V** ... NS3-G251V

Full genome tree of all outbreak sequences

2020-04-04

Notable changes:

- **3,459 full genomes (+357)** (excluding low coverage, out of 3,795 entries)

 - **S clade 763 (+80):**
 - 67 Australia/VIC, 9 Spain, 2 USA/VA, 2 USA/NY

 - **G clade 1,576 (+186):**
 - 151 Australia/VIC, 16 Austria, 6 USA/NY, 4 USA/VA, 4 Spain, 3 USA/WI, 1 Belarus, 1 Latvia

 - **V clade 389 (+51):**
 - 48 Australia/VIC, 1 Austria, 1 Spain, 1 USA/NY

 - **Other clades 731 (+40):**
 - 31 Australia/VIC, 4 Australia/NT0, 4 Austria, 1 Belarus

We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the analysis is based.
Full genome trees of major subclades 2020-04-04

Black ... China
Blue ... Asia (not China)
Green ... Oceania
Magenta ... Americas
Red ... Europe
Light Blue ... Africa

Notable changes:
S clade 763 (+80):
67 Australia/VIC, 9 Spain, 2 USA/VA, 2 USA/NY

We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the analysis is based.
We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the analysis is based.

Full genome trees of major subclades 2020-04-04

G clade

Notable changes:
G clade 1,576 (+186):
151 Australia/VIC, 16 Austria, 6 USA/NY, 4 USA/VA, 4 Spain, 3 USA/WI, 1 Belarus, 1 Latvia

Black ... China
Blue ... Asia (not China)
Green ... Oceania
Magenta ... Americas
Red ... Europe
Light Blue ... Africa
We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the analysis is based.

Full genome trees of major subclades 2020-04-04

Notable changes:

V clade 389 (+51):
48 Australia/VIC, 1 Austria, 1 Spain, 1 USA/NY
Full genome nucleotide alignments for high quality genomes

2020-04-03 (updated every 3 days)

To reduce noise of random mutations all 2,402 available high quality genomes (out of 2,434) are considered here.

The color codes in the heatmaps represent the number of genomes carrying a positional mismatch to different PCR primers and probes—Presented here is data analysed using high quality genomes on EpiCoV with PCR primers and probes (amplicons) from Charite, HKU, ChinaCDC and USACDC.

The colors Blue-Yellow-Red are used to represent a range of no genomes carrying a mismatch on amplicon positions to the highest number of genomes carrying a mismatch on amplicon positions.

All the genomes are aligned to the reference genome EPI_ISL_402124 and the amplicon co-ordinates are as per the reference genome.

We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the analysis is based.

https://www.who.int/docs/default-source/coronaviruse/protocol-v2-1.pdf
https://www.who.int/docs/default-source/coronaviruse/peiris-protocol-16-1-20.pdf
http://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.html
https://www.who.int/docs/default-source/coronaviruse/uscdcrt-pcr-panel-primer-probes.pdf

by BII/GIS, A*STAR Singapore
Receptor binding surveillance for high quality genomes 2020-04-04

4 different rare variants near the binding interface not known to be linked to severity. V483A in 16 USA/WA samples, L455I together with F456V in one Brazilian sample and G476S in 7 USA/WA samples.

To reduce noise of random mutations all 2,264 available high quality genomes (out of 2,919) are considered here.

We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the analysis is based.

Equivalent positions have been studied for V483A in MERS (I529T, DOI: 10.1128/JVI.01381-18) and L455I, F456V and G476S in SARS (Y442F, DOI: 10.1074/jbc.M111.325803 and L443R, D463G DOI: 10.1086/651022) where they weakly reduced host receptor binding and altered antigenicity.

Numbering relative to start codon 21563 in hCoV-19/Wuhan/WIV04/2019

by BII/GIS, A*STAR Singapore
Summary

First Characterization
Full genome tree of all CoV families

- Nearest bat precursor RaTG13
- Nearest pangolin precursors from Guangdong
- Several pangolin-derived sequences part of recent family of related viruses

Genome identity to hCoV-19:
- 96% RaTG13 (nearest bat precursor)
- 90% Guangdong1/P2S (nearest pangolin precursor)
- 88% ZC45/ZXC21 bat precursor
- 80% SARS

We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the analysis is based.

Phylogenetic tree of Wuhan CoV full genome sequences in context of representatives of all CoV families (whole genome Neighbor Joining, Maximum Composite Likelihood, uniform rates, 500 bootstrap, MegaX)

by BII/GIS, A*STAR Singapore
Spike host receptor changes for nearest bat and nearest pangolin sequences

<table>
<thead>
<tr>
<th></th>
<th>Strain 1</th>
<th>Strain 2</th>
<th>Spike overall identity</th>
<th>Interface mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Wuhan</td>
<td>Bat Yunnan</td>
<td></td>
<td>98%</td>
<td>13</td>
</tr>
<tr>
<td>Pangolin Guangdong</td>
<td>Bat Yunnan</td>
<td></td>
<td>90%</td>
<td>13</td>
</tr>
<tr>
<td>Pangolin Guangdong</td>
<td>Human Wuhan</td>
<td></td>
<td>91%</td>
<td>1</td>
</tr>
</tbody>
</table>

by BII, A*STAR Singapore
Host receptor binding site differences between SARS, bat precursor (RaTG13) and human outbreak hCoV-19

Additional Analysis for RaTG13 sequence from Zhengli Shi’s lab
CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology

Cyan ... ACE2 human host receptor
Gray ... CoV spike glycoprotein
Red ... mutations between either SARS (left side) or bat precursor RaTG13 (right side) vs human outbreak WIV04 CoV

- Surface proteins are 76% and 98% identical, respectively
- Antigenic surface highly divergent compared to SARS
- Bat precursor differences in receptor binding interface indicative of changes that allowed host switch

We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the analysis is based.
Potential drug targets highly conserved between hCoV-19 and SARS

- Both, the main protease and polymerase which are potential drug targets are highly conserved between hCoV-19 and SARS with 96% and 97% overall identity, respectively.
- Inhibitors developed against the SARS-CoV main protease or polymerase have good potential to bind similarly to hCoV-19.

We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the analysis is based.